Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness
نویسندگان
چکیده
BACKGROUND Chitosan and its derivates are widely used for biomedical application due to antioxidative, anti-inflammatory, antimicrobial and tissue repair induced properties. Chitosan-based materials also used as a haemostatic agent but influence of different molecular weight and concentration of chitosan on biological response of blood cells is still not clear. The aim of this research was to evaluate interaction between human blood cells and various forms of chitosan-based materials with different molecular weight and chitosan concentration and prove their effectiveness on in-vivo model. METHODS We used chitosan with molecular weight 200, 500 and 700 kDa and deacetylation rate 80-82 %. For chitosan impregnation of gauze chitosan solutions in 1 % acetic acid with different concentrations (1, 2, 3, 5 %) were used. We used scanning electron microscopy to obtain information about chitosan distribution on cotton surface; Erythrocyte agglutination test and Complete blood count test - for evaluation of interaction between blood cells and chitosan-based materials with different compound. In-vivo studies was performed in 20 Wistar rats to evaluate effectiveness of new dressing. RESULTS Our data shown that chitosan can bind erythrocytes in concentration-depend manner that does not depend on its molecular weight. In addition, chitosan-based materials affect selectively human blood cells. Composition of chitosan with cotton materials does not change erythrocyte shape and does not cause agglutination. CONCLUSIONS Сotton-chitosan materials have higher adhesive properties to platelets that depend on molecular weight and concentration of chitosan. These materials also change platelets' shape that probable is one of the most important mechanisms of haemostatic effect. In-vivo studies have shown high effectiveness of 2 % 200 kDa chitosan for stop bleeding from arteries of large diameter.
منابع مشابه
In Vitro Release Studies of Enoxaparin in Nanoparticle form and Enterically Coated Tablets Containing Surfactants
In the past decade, many strategies have been developed to enhance oral drug delivery. Different techniques were investigated, amongst those the use of permeation enhancers such surfactants and biodegradable polymers were studied more extensively. Chitosan and its derivatives have been studied as permeation enhancer. The aim of the current study was to develop a nanoparticulate system based on ...
متن کاملPreparation, Characterization and in vitro Release Studies of Enoxaparin in Nanoparticle form and Enterically Coated Tablets Containing Different Enhancers
In the past decade, many strategies have been developed to enhance oral drug delivery. Different techniques were investigated, amongst those the use of permeation enhancers such surfactants and biodegradable polymers were studied more extensively. Chitosan derivatives have been studied as permeation enhancer in free soluble form and as nanoparticulate systems. The aim of the current work wa...
متن کاملDesign of New-Generation Usable Forms of Topical Haemostatic Agents Containing Chitosan.
Designing usable forms of topical haemostatic agents is the most important activity during the design process, resulting in strengthened functional properties of the final medical devices. This study aimed to propose indications for a research programme based on risk management supporting the development of two usable forms of a topical haemostatic agent: chitosan/alginate lyophilized foam and ...
متن کاملIn vivo evaluation of physiological efficacy of insulin-loaded nanoliposomes prepared for oral delivery
Introduction: Oral delivery is the most favorable route for insulin administration. The aim of this study was to generate new chitosan coated insulin nanoliposomes and then to assess the physiological efficacy of these nanoliposomes after oral administration in diabetic rabbits. Methods: Nanoliposomes with negative surface charge encapsulating insulin were prepared by reverse phase evaporat...
متن کاملIn vitro biocompatibility of low and medium molecular weight chitosan–coated Fe3O4 nanoparticles
Objective(S): The chitosan - Fe3O4 core - shell nanoparticles were synthesized. The nanoparticles should be coated properly in the shape of core-shell, so that they remain hidden from the body's immune system after coating. Effects of different molecular weight in coating were investigated. Methods: Nanoparticles coated with low and ...
متن کامل